
Relational SQL Columns
or JSON Document Attributes?

Normalize or Denormalize?

Franck Pachot
Developer Advocate, MongoDB

WELCOME

Documents,
Normalized Tables, or
Documents in Tables?

 Tables
CREATE TABLE blog_posts (
 id UUID primary key,
 data JSONB -- title, content,
 -- tags, categories…
);

CREATE TABLE blog_posts (
 id UUID primary key bigserial,
 title TEXT,
 content TEXT
);

CREATE TABLE blog_tags (
 blog_id UUID references blog_posts,
 num INT,
 tag TEXT,
 primary key (id, num)
);

CREATE TABLE blog_categ… -- Many-to-Many
CREATE TABLE categories… -- Lookup table

 Document

 Docs. in table
CREATE TABLE blog_posts (
 id UUID primary key bigserial,
 title TEXT,
 content TEXT,
 metadata JSONB -- tags, categories…
);

How do you
build your
applications?

Do you know the applications
that will access the database?
🔵 No (database schema first):
 - normalize (and add indexes later)
🔴 Yes (application objects first):
 - design for the business domain objects
 - known: read/write patterns, cardinalities

Is your team more comfortable with
- SQL (native SQL, ORM)?
- JSON, Document API?

select i as
 item -- SQ

L vs SQL/JS
ON

,('{1,2,3}
'::int[])

[i] as "SQL
 array"

,('[1,2,3]
'::json)-

>i as "JSO
N array"

from genera
te_series(0

,3) i
 ;

 item | in
SQL array |

 in JSON ar
ray

------+----
----------+

 0 |
 (null) |

 1

 1 |
 1 |

 2

 2 |
 2 |

 3

 3 |
 3 |

(null)

How new is
JSON in SQL
databases?

Postgres original concept [ston86]:
- complex datatypes
- custom objects
- and later TOAST, GIN, JSON, JSONB, SQL/JSON

Past 25 years of RDBMS:
- clustered tables
- BLOB
- Arrays
- Nested Tables
- Object-Relational
- XML in the database
- JSON in the database
- embeddings (vectors)

None were used alone, but as an addition
to the relational tables

https://dsf.berkeley.edu/papers/ERL-M85-95.pdf

❝ JSON is
Schemaless

There is nothing like unstructured data
(or it doesn't deserve storing it)
- application must know the schema
- index keys are on schema's fields

Polymorphism
- each document declare its own schema
- some part can be enforced for a
 collection/table with schema validation
 or integrity constraints, unique indexes

Flexible: don't need to declare the schema upfront
- no need to switch from the application IDE
 to the database and run DDL

Tables, SQL,
Relations, and
Normal forms

Normal
Forms

Relational algebra, normal forms
are important to understand data
modeling concepts

What matters is the problem it solves:
- avoid update anomalies
- understand your data
- evolve your data structures
- get good predictable performance

And the developer experience

CREATE TABLE PRODUCTS (
 PRODUCT_ID UUID PRIMARY KEY,
 PRODUCT_NAME TEXT NOT NULL,
 PRICE NUMERIC
);

CREATE TABLE CUSTOMERS (
 CUSTOMER_ID BIGSERIAL PRIMARY KEY,
 CUSTOMER_NAME TEXT NOT NULL
);

CREATE TABLE ORDERS (
 ORDER_ID UUID PRIMARY KEY,
 CUSTOMER_ID BIGINT NOT NULL REFERENCES CUSTOMERS,
 ORDER_DATE TIMESTAMPTZ, -- null if shopping cart
 TOTAL_AMOUNT NUMERIC
);

CREATE TABLE ORDER_LINES (
 PRIMARY KEY (ORDER_ID, LINE_NO),
 ORDER_ID UUID,
 LINE_NO INT,
 QUANTITY INT,
 PRICE NUMERIC,
 PRODUCT_ID UUID REFERENCES PRODUCTS
);

Data used together stored in multiple tables:
- cannot have one index for both
- must lock at multiple places

Some data must be duplicated:
- by business requirement:
 - price used by the order without ref. to catalog
 - total amount for performance (summary)

Different lifecycle of data
- shopping cart often deleted may fragment
 the permanent orders table and indexes

Normalize?

❝ No
Foreign
Keys in
JSONB

Relational model needs foreign key to guarantee
referential integrity
- on delete error, cascade, set null
- on insert check and lock parent
- on update cascade

But is that so simple?
- delete cascade often not efficient (row-by-row)
- DB locks just in case (delete parent)
- the business logic may be more complex
 than simply cascading updates

Depends on the types of relationships

Type of
Associations

◆─ “part-of” Composition
- Exclusive ownership, shared lifecycle
Example: A blog post owns its comments
SQL: FK on delete cascade / JSON: embedded

◇─ “has-a” Aggregation
- Shared ownership, independent life cycles
Example: A blog post has categories
SQL: FK on delete restrict / JSON: reference or embed

─ “use-a” Association
- No ownership, independent life cycles
Example: Authors use blog posts to publish their content
SQL: FK on delete set null / JSON: reference

Relational Document

Designed
for business objects

Designed
for data entities

Order Headers

Order Lines

Products

Orders Asia

Orders Europe

Orders US

SQL Interactive
Transactions

- Many round trip if not a stored procedure
(or a PL/SQL block)

- The database doesn’t know what happens
until commit (cache, two-phase locking)

- N+1 or eager queries to fetch one entity

Single Document API
call to the DB

- One atomic call with all business
transaction data

- DB can optimize and isolate the
transaction (with no lock)

Relational Document

Designed by
Business Objects

Normalized by
Data Entities

Documents
for

 Domain
 Driven
 Design

Modern development

One database per bounded context:
- no need to normalize
- DB schema fits application objects
- a document fits business transactions

More databases but simple schemas
- no need for ORM / complex queries
- decouple development devops teams
- all logic in application, CI/CD for validation
- Secondary indexes for more use-cases
- change data capture to secondary datastores

https://scabl.blogspot.com
/p/advancing-enterprise-ddd.html

Domain
Driven
Design

https://scabl.blogspot.com/p/advancing-enterprise-ddd.html
https://scabl.blogspot.com/p/advancing-enterprise-ddd.html

Online order entries
// customer (1-*) orders (*-*) products
{
 customer_email: ...,
 customer_name: ...,
 shopping_cart: [
 { product: ..., quantity: ...},
 ...
],
 recent_orders: [
 { date: ..., product: ..., ...},
 ...
]
}

Product sales analysis
// products (*-*) customer
{
 day: ...,
 products: [
 { date: ..., product: ...,
 types_of_customers: [
 { type: ..., quantity: ... },
 ...
],
 },
 ...
]
}

Document model per domain

Indexing
on sub-
documents
(JSON array)

GIN indexes:
- multi-key (one entry per array item)
- but bitmap (no index only scan, no
range / sort, only JSON operations)

Expression indexes:
- can index a path but not through
arrays (or it needs one index per item)

Multiple indexes:
- can be combined with bitmap scan
but does not preserve order for sort

btree-gin extension:
- composite GIN + expression
but same limitations

create table orders(
 primary key(id)
 , id bigserial
 , country_id int
 , created_at timestamptz default clock_timestamp()
 , details jsonb
);

Order with details (JSONB)

SELECT country_id, details
 FROM orders
 WHERE country_id = 1
 AND details @> '[{"product_id": 15}]'
 ORDER BY created_at DESC
 LIMIT 10
;

Equality + Sort query (pagination)
create table orders(
 primary key(id)
 , id bigserial
 , country_id int
 , created_at timestamptz default clock_timestamp()
 , details jsonb
);

CREATE INDEX orders1 ON orders ("country_id", "created_at" desc)
;

 QUERY PLAN

 Limit (actual time=0.036..0.117 rows=10 loops=1)
 Buffers: shared hit=32
 -> Index Scan using orders1 on orders (actual rows=10 loops=1)
 Index Cond: (country_id = 1)
 Filter: (details @> '[{"product_id": 15}]'::jsonb)
 Rows Removed by Filter: 38
 Buffers: shared hit=32

B-Tree index

-- For paths with array

CREATE INDEX orders2 ON orders using GIN (details)
;

B-Tree index + GIN indexes

X

CREATE INDEX orders1 ON orders ("country_id", "created_at" desc)
;

-- Only for scalar:

CREATE INDEX orders0 ON orders ((("details"->>'product_id')::int))
;

 -> Sort (actual time=222.683..226.142 rows=14955 loops=3)
 Sort Key: created_at DESC
 Buffers: shared hit=158 read=61738, temp read=4584 written=4592
 -> Parallel Bitmap Heap Scan on orders (actual rows=14955 loops=3)
 Recheck Cond:
 ((country_id = 1) AND (details @> '[{"product_id": 15}]'::jsonb))
 Rows Removed by Index Recheck: 96641
 Heap Blocks: exact=9701 lossy=11292
 Buffers: shared hit=145 read=61733
 -> BitmapAnd (actual time=78.189..78.190 rows=0 loops=1)
 Buffers: shared hit=145 read=613
 -> Bitmap Index Scan on orders1 (actual rows=100362 loops=1)
 Index Cond: (country_id = 1)
 Buffers: shared read=387
 -> Bitmap Index Scan on orders2 (actual rows=499460 loops=1)
 Index Cond: (details @> '[{"product_id": 15}]'::jsonb)
 Buffers: shared hit=145 read=226

Used for equality, but requires additional Sort

CREATE EXTENSION BTREE_GIN
;

CREATE INDEX orders3 ON orders
 using GIN (country_id , details, created_at)
;

SELECT country_id, details
 FROM orders
 WHERE country_id = 1
 AND details @> '[{"product_id": 15}]'
 ORDER BY created_at DESC
 LIMIT 10
;

B-Tree + GIN index (with extension)

-> Sort (actual time=109.979..113.574 rows=14955 loops=3)
 Sort Key: created_at DESC
 Sort Method: external merge Disk: 12456kB
 Buffers: shared hit=237 read=40117, temp read=4585 written=4594
 Worker 0: Sort Method: external merge Disk: 11720kB
 Worker 1: Sort Method: external merge Disk: 12504kB
 -> Parallel Bitmap Heap Scan on orders (actual rows=14955 loops=3)
 Recheck Cond:
 ((country_id = 1) AND (details @> '[{"product_id": 15}]'::jsonb))
 Rows Removed by Index Recheck: 1760
 Heap Blocks: exact=13486
 Buffers: shared hit=226 read=40110
 -> Bitmap Index Scan on orders3 (actual rows=50144 loops=1)
 Index Cond:
 ((country_id = 1) AND (details @> '[{"product_id": 15}]'::jsonb))
 Buffers: shared hit=226 read=251

Equality but requires additional sort

Think about
indexes and
TOASTing

JSON columns:
good for flexible schema data that is
- inserted as a whole
- queried together
- not too large (fits in a tuple)
- doesn't need range or sort index on fields with
an array in the json path

Doesn't solve the indexing of One-to-Many:
- avoids a join but needs to combine bitmaps,
 and recheck conditions
- large documents are stored in TOAST
 chunks with an additional index

❝ One
TOAST
fits all
(Oleg Bartunov)

PostgresPro talks:

 - Roasted Toasted Json:
https://www.pgconf.in/conferences/pg
confin2024/program/proposals/629
 - One TOAST fits all:
http://www.sai.msu.su/~megera/postg
res/talks/toast-pgcon-2022.pdf

Pluggable Toaster:

https://www.pgconf.in/conferences/pgconfin2024/program/proposals/629
https://www.pgconf.in/conferences/pgconfin2024/program/proposals/629
http://www.sai.msu.su/~megera/postgres/talks/toast-pgcon-2022.pdf
http://www.sai.msu.su/~megera/postgres/talks/toast-pgcon-2022.pdf
https://commitfest.postgresql.org/patch/3490/

Documents, Tables, or
Documents in Tables?

Application-centric, optimized for
the domain access patterns, but
different than document databases
in terms of index and data locality

Documents (JSON only)
Data-centric schema,
normalized central
database designed
before the applications

Relational tables
Great to add some small
schema-on-read data to a
normalized model, or store
larger documents as a whole

Tables with JSONB

Which API?
- PostgreSQL JSON operators
- SQL/JSON in PostgreSQL
- DocumentDB extension

DocumentDB extension

● RUM indexes, BSON type
● MongoDB emulation on top
● Open Source, now part of

Linux Foundation
● Used in CosmosDB vCore
● May be used in the future

for Amazon DocumentDB

Blog:
mdb.link/documentdb-xplan

https://dev.to/franckpachot/documentdb-comparing-emulations-with-mongodb-4cec

postgres=# \d+ documentdb_data.documents_15*

 Table "documentdb_data.documents_15"
 Column | Type || Storage |
-----------------+--------------------------++----------+
 shard_key_value | bigint || plain |
 object_id | documentdb_core.bson || extended |
 document | documentdb_core.bson || extended |
 creation_time | timestamp with time zone || plain |
Indexes:
 "collection_pk_15" PRIMARY KEY, btree (shard_key_value, object_id)
 "documents_rum_index_35" documentdb_rum (
document documentdb_api_catalog.bson_rum_single_path_ops (path=a, tl='2691'),
document documentdb_api_catalog.bson_rum_single_path_ops (path=ts, tl='2691'))
Check constraints:
 "shard_key_value_check" CHECK (shard_key_value = '15'::bigint)
Access method: heap

db.demo.createIndex({ "a": 1 , ts: -1 }) ;

Limit (actual rows=10 loops=1)
 Buffers: shared hit=185
 -> Sort (actual rows=10 loops=1)
 Sort Key: (documentdb_api_catalog.bson_orderby(document,
'BSONHEX0d00000010747300ffffffff00'::documentdb_core.bson)) DESC NULLS LAST
Sort Method: top-N heapsort Memory: 27kB
 Buffers: shared hit=185
 -> Bitmap Heap Scan on documents_15 collection (actual rows=10014 loops=1)
 Recheck Cond: (document OPERATOR(documentdb_api_catalog.@=)
'BSONHEX0c0000001061000100000000'::documentdb_core.bson)
 Heap Blocks: exact=169
 Buffers: shared hit=177
 -> Bitmap Index Scan on "a_1_ts_-1" (actual rows=10014 loops=1)
 Index Cond: (document OPERATOR(documentdb_api_catalog.@=)
'BSONHEX0c0000001061000100000000'::documentdb_core.bson)
 Buffers: shared hit=8

db.demo.find({ a: 1 }).sort({ts:-1}).limit(10)

Equality, Sort, Range indexes on JSON paths with
arrays (One-to-Many sub-documents)

- ✅ MongoDB
- ❌ Amazon DocumentDB
- ❌ Microsoft CosmosDB
- ❌ PostgreSQL with GIN on JSONB
- ❌ PostgreSQL with RUM and DocumentDB
- ❌ Oracle MongoDB API

Blog series on MongoDB Multi-key Indexes:
https://dev.to/franckpachot/series/31244

Multi-key
Indexing

db.orders.createIndex({
 "country_id": 1,
 "order_details.product_id": 1,
 "created_at": -1
});

db.orders.find({
 country_id: 1,
 order_details: {
 $elemMatch: { product_id: 15 }
 }
}).sort({ created_at: -1 }
).limit(10);

https://dev.to/franckpachot/series/31244

Best advice:
understand
how it works

Indexing possibilities
Multi-key range/sort

Data locality
MongoDB keeps documents together
PostgreSQL may split them (TOAST)

Velocity of development
Start an application without declaring anything,
vs. running DDL on the DB before DML from the application

For unknown access patterns
Use SQL and normalized relational schema

Transactional needs
MongoDB is ACID optimistic locking, no wait but retry logic
PostgreSQL has explicit locks (e.g FOR UPDATE SKIP LOCKED)

Let's continue the discussion
https://www.linkedin.com/in/franckpachot
blog: https://dev.to/franckpachot
https://x.com/FranckPachot

Thank You For Your Time

Franck Pachot
Developer Advocate

https://www.linkedin.com/in/franckpachot/
https://dev.to/franckpachot
https://x.com/FranckPachot

